西电赵鲁豫教授:5G新体制天线技术
全讯直播
阅读:
admin
2019-06-11 12:04

  本文通过对现今5G技术的发展趋势和发展瓶颈进行分析,提炼出了在5G MIMO天线技术中最为重要的耦合减小技术。

  通过无源参数,有源参数和MIMO参数的测试和评估,证实了这两类新体制天线G中的明显优势和广阔应用场景。

  以信息技术为代表的新一轮科技和产业变革,正在逐步孕育升级。在视频流量激增,用户设备增长和新型应用普及的态势下,迫切需要第五代移动通讯系统(5G)的技术快速成熟与应用,包括移动通信,Wi-Fi,高速无线数传无一例外的需要相比现在更快的传输速率,更低的传输延时以及更高的可靠性。为了满足移动通信的对高数据速率的需求,一是需要引入新技术提高频谱效率和能量利用效率,二是需要拓展新的频谱资源[1]。

  在此背景下,大规模多输入多输出技术 (Massive MIMO)已经不可逆转的成为下一代移动通信系统的中提升频谱效率的核心技术[2]。多输入输出技术(MIMO) 可以有效利用在收发系统之间的多个天线之间存在的多个空间信道,传输多路相互正交的数据流,从而在不增加通信带宽的基础上提高数据吞吐率以及通信的稳定性

  。而Massive MIMO技术在此基础之上更进一步,在有限的时间和频率资源基础上,采用上百个天线单元同时服务多达几十个的移动终端(详见图1),更进一步提高了数据吞吐率和能量的使用效率[2]。

  除了Massive MIMO的应用,5G另外一个关键技术就是高频段(毫米波)传输。传统移动通信系统,包括3G,4G移动通信系统,其工作频率主要集中在3GHz以下,频谱资源已经异常拥挤。而工作在高频段的通信系统,其可用的频谱资源非常丰富,更有可能占用更宽的连续频带进行通信,从而满足5G对信道容量和传输速率等方面的需求[1],

  。因此,在2015年11月,世界无线~3700 MHz、以及4800~4990 MHz作为5G部署的重要频率之外,又提出了对24.25~86GHz内的若干频段进行研究,以便确定未来5G发展所需要的频段[1],[5]。但毫米波移动通信也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。因此,高增益、有自适应波束形成和波束控制能力的天线G在毫米波段应用的关键技术[6]。

  然而,考虑到上述系统、天线阵的实际应用场景和应用环境,带有Massive MIMO天线G基站建站时,由于实际空间受限,天线阵的体积不能很大。天线阵物理尺寸受限的情况下,多个天线单元之间的互相耦合、干扰,必然会造成天线性能的下降,主要表现在以下几个方面:

  ;(2)由于天线单元之间互相的干扰,造成信噪比变差,进而直接影响数据吞吐率;(3)使得能够有效辐射的能量减少,造成天线阵增益降低,能量利用效率低下[8],

  综上所述,在5G适用的低频段和高频段,迫切需要寻找一种行之有效的改善空间受限的Massive MIMO天线阵列的性能的理论和设计方法,能够即缩小天线阵体积,又保持原有的天线G Massive MIMO的天线设计和小型化方面,目前公开发表的文献比较少,典型的代表包括,新加坡国立大学陈志宁教授团队和东南大学洪伟教授团队的基于超材料的平面透镜天线],以及加拿大康考迪亚大学一些学者提出的同样含有超材料透镜的、用缝隙波导馈电的天线G频段,Massive MIMO天线阵依然存在着大量的仍待解决的问题,如小型化设计,性能改善,新工艺的实现等等。在我国开展5G技术试验的关键阶段,进一步推动Massive MIMO天线阵的设计理论研究,性能改善方法研究,对于5G技术的快速成熟和使用,具有着重要而又深远的意义。

  在终端天线的耦合减小技术方面,本人于2012年在香港中文大学,提出了一种全新的适用于终端天线的耦合减小技术。利用两个或多个耦合的谐振器网络,并联或级联在两天线或多天线上,通过合理的综合设计网络参数,达到紧耦合的天线的耦合减小和天线],这种解耦网络,被称为“耦合谐振器去耦网络”,其基本的原理图见图2。该网络的主要特点有:

  1) 体积小,易于集成。最新的基于低温共烧陶瓷技术的该类去耦网络可以采用1608封装,非常适合移动终端使用。2) 此网络有一套可以根据天线参数进行综合设计的理论。由于网络参数可控,该去耦网络往往能实现相对较宽的解耦带宽。

  为了5G满足移动终端器件小型化的需求,我们采用了基于1608封装的低温共烧陶瓷(LTCC)技术来实现该去耦网络。采用的材料介电常数为9.8,总共有19层叠层而成。其示意图请见图3。

  我们选取Wi-Fi 2.4GHz频段作为实例,展示耦合谐振器去耦网络在实际天线的(a)和(b)分别为原始耦合较强的天线以及加入耦合谐振器去耦网络之后的天线。天线均采用柔性印制电路板(FPC)形式制成,天线D打印机设计加工。

  去耦前后,图4中两组天线可以看出,原来耦合天线虽然匹配满足要求,但是隔离度只有5至6dB,这说明有25%以上的能量没有有效辐射,而是被另一天线负载吸收。在合理优化设计耦合谐振器去耦网络之后,匹配状态没有明显恶化的情况下,隔离度提高到10至15dB,此时耦合的能量已经小于10%。可以看到耦合谐振器去耦网络对提高天线隔离度的明显作用。

  作为一种崭新的概念,超材料这类人造的、具有优良电磁特性和电磁调控能力的材料与结构,能够明显提升天线的性能及扩展其功能。因此,得到了业内外、国内外的广泛关注。

  本课题组一直非常关注超材料技术及其在MIMO天线阵上的应用,并不断进行了相关的前沿研究于技术积累。截止目前为止,我们开拓了三种超材料技术与MIMO天线、天线阵及相控阵相结合的天线技术,分别是:

  覆盖超表面的MIMO天线所示,以微带天线线阵为例,在紧耦合的多单元MIMO天线阵的上方合适的距离覆盖一层超材料表面之后,微带天线的电磁波有三条耦合路径:

  图9、覆盖超材料表面的微带天线阵列耦合机理分析本课题组在工作在5GHz频段的两个微带天线单元进行了实物验证。如图10与图11所示,图10是两个互相耦合很强的微带天线,两者之间边到边的物理距离只有约1mm,即不到0.02倍的自由空间工作波长。

  覆盖一层采用开口谐振环组成的超表面之后,如图11,两个天线之间的匹配和隔离度如图12所示,可以看到,合理设计了超表面的物理参数之后,两个天线的匹配状态没有任何恶化的基础上,两个天线之间的隔离度提升到了接近28dB,总共有20dB的提升。

  除了在无源S参数上可以看到超表面对性能的明显提升。我们还研究了超表面对整个微带MIMO天线辐射特性的改善。具体的测试状态如图13所示。我们在实验室自有的SATIMO SG-24系统里测试了两个天线各自激励时候的矢量方向图,并看到了天线)和两个天线之间包络相关系数(ECC)的明显降低(图15)。

  图14、不含有超表面的和含有超表面的两微带天线、不含有超表面的和含有超表面的两微带天线单元之间的包络相关系数

  采用超材料替代天线地板的MIMO天线技术在天线阵表面覆盖超表面虽然可以明显的减小天线单元之间的耦合和改进天线的其他性能,但是会提高天线的剖面,这在很多应用中是我们不希望看到的。因此,我们又探索了将这一层超材料嵌入传统天线地板的可能性,并得到了一些令人振奋的初步结果。

  如图16所示,我们将一层蘑菇型(接地)的电子带隙谐振结构(EBG)结构组成的地板替代了原来微带天线的金属导体地板,并研究了替代之后的天线特性。研究发现,这类天线阵同样有着非常低的单元间互耦(工作在28GHz毫米波频段),如图17。同时,在单元非常紧凑的同时,有着非常好的相扫能力,如图18、19。非常适合5G毫米波频

  图16、采用超材料地板的八单元微带天线、采用金属地板和采用EBG地板的天线阵中两单元之间的隔离度

  除了上述展示的技术,我们已经成功的证明,超材料覆盖的技术可以适用于更多的单元数,方阵以及双极化天线阵的耦合减小和性能提升。我们还验证了采用超材料包围的两单元微带天线阵,同样可以达到耦合减小的目的。后续本课题组将针对更为实际的应用场景,将上述提到的技术产品化。为5G技术的进一步普及和提升,尽一份努力。

  [6] Roh W, Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results[J]. Communications Magazine IEEE, 2014, 52(2):106-113.

  [10] Jiang M, Chen Z N, Zhang Y, et al. Metamaterial-based Thin Planar Lens Antenna for Spatial Beamforming and Multi-beam Massive MIMO[J]. 2016, PP(99):1-1.

  [13] L. Zhao and K.-L. Wu, A broadband coupled resonator decoupling network for a three-element compact array, Proc. IEEE MTT-S Int. Microw. Sym., Jun. 2013.